2007 Linear Motion Question

1. (a) A particle is projected vertically downwards from the top of a tower with speed $u \mathrm{~m} / \mathrm{s}$. It takes the particle 4 seconds to reach the bottom of the tower.

During the third second of its motion the particle travels 29.9 metres.

Find

(i) the value of u

(ii) the height of the tower.
(b) A train accelerates uniformly from rest to a speed $v \mathrm{~m} / \mathrm{s}$.

It continues at this speed for a period of time and then decelerates uniformly to rest.

In travelling a total distance d metres the train accelerates through a distance $p d$ metres and decelerates through a distance $q d$ metres, where $p<1$ and $q<1$.
(i) Draw a speed-time graph for the motion of the train.
(ii) If the average speed of the train for the whole journey is $\frac{v}{p+q+b}$, find the value of b.
\qquad
Q. 1

$$
\begin{array}{ll}
A \rightarrow c & \\
\begin{array}{ll}
u=u & s=u T+\frac{1}{2} a T^{2} \\
v=- & x+29 \cdot 9=u(3)+\frac{1}{2}(g)(3)^{2} \\
a=9 & x+29 \cdot 9=3 u+\frac{1}{2}(g)(9) \\
s=x+29 \cdot 9 & x+29 \cdot 9=3 u+4 \cdot 5 \cdot g
\end{array} \\
T=3 &
\end{array}
$$

$$
\begin{aligned}
& 2 u+2 g+29.9=3 u+4.5 g \\
& 2 g+29.9-4.5 g=3 u-2 u \\
& 29.9-2.5 g=u \\
& 29.9-24.5=4 \\
& 5.4 \mathrm{~m} / \mathrm{s}=u
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& A \rightarrow D \\
& U=5 \cdot 4 \\
& v=- \\
& a=9 \\
& s=? \\
& T=4
\end{aligned}
$$

$$
\begin{aligned}
& S=47+\frac{1}{2} a 7^{2} \\
& S=(5.4)(4)+\frac{1}{2}(9)(4)^{2} \\
& S=21.6+89 \\
& S=21.6+78.4 \\
& S=100 n
\end{aligned}
$$

(1)

$$
\begin{array}{ll}
\rho d & p d=\frac{1}{2}\left(T_{1}\right)(v) \\
T_{1} & \frac{2 p d}{v}=T_{1}
\end{array}
$$

(2)

$$
\begin{align*}
v d-(p d r q d) \quad \begin{aligned}
d-(p d-q d) & =\left(T_{2}\right)(v) \\
T_{2} & \frac{d-p d-q d}{}=T_{2} v \\
\frac{d(1-p-q)}{v} & =T_{2}
\end{aligned}
\end{align*}
$$

(3)

$$
v \begin{array}{ll}
\frac{q d}{}> & q \frac{1}{2}\left(T_{3}\right)(v) \\
\frac{2 q d}{v} & =T_{3} \tag{5}
\end{array}
$$

$$
\text { Neatace } p \in \pm=\frac{d}{\frac{d(p+q+1)}{v}}
$$

$$
\text { Averatac speto }=\frac{d}{d(p+q+1)} \cdot \frac{v}{1}=\frac{v}{p+q+1}
$$

$$
\frac{v}{p+q+b}=\frac{v}{p+q+1}
$$

$$
\therefore \quad b=1
$$

$$
\begin{aligned}
& \text { Averate } S p \in \epsilon_{D}=\frac{d}{\left(\frac{2 d p}{v}\right)+\left(\frac{d-d p-d q}{v}\right)+\left(\frac{2 d q}{v}\right)} \\
& \text { Aranas shets }=\frac{d}{\frac{2 d p+d-d p-d q+2 d q}{v}} \\
& \text { Avoatas } \text { spEED }=\frac{d}{\frac{d p+d q}{V}+d}
\end{aligned}
$$

